Characterization and Modeling of Nanotopography Effects on CMP

Prof. Duane Boning, Brian Lee Microsystems Technology Laboratories Massachusetts Institute of Technology, Cambridge, MA

> Win Baylies*, Noel Poduje, Pat Hester Baytech Group*, ADE Corp.

John Valley, Chris Koliopoulos ADE Phase Shift

Dale Hetherington, Sandia National Labs

boning@mit.edu, phone: 617-253-0931 http://www-mtl.mit.edu/Metrology

Outline

- 1. What is Nanotopography?
	- П Effect of nanotopography during CMP
- 2. CMP Planarization Length
	- ш Hypothesis: CMP planarization length (PL) determines how thin films over nanotopography evolve during polishing
- 3. Modeling of Nanotopography Effects During CMP
- 4. Nanotopography/CMP Experiments
	- п Process and measurements
	- п Wafers: range of nanotopography features/length scales
- 5. Experimental results
- 6. Nanotopography and STI CMP
- 7. Conclusions

What is Nanotopography?

"Nanotopography" refers to wafer surface variations with:

- 1. Lateral length scales from 0.2 mm to 20 mm
- 2. Height variations \sim 10 to 100 nm

Nanotopography Map: 8" SSP Silicon Epi Wafer

Filtered data measured using a NanoMapper™ production nanotopography tool at ADE Phase Shift in Tucson, AZ

SSP wafer, Diameter Scan (Filtered Data) using NanoMapper[™]

*Measured using a NanoMapper ™ production nanotopography tool at ADE Phase Shift in Tucson, AZ

4

Nanotopography Propagation During CMP

Xu et al, Electrochemical and Solid-State Letters, **1**, 181, 1998.

- • Conformal Polishing
	- Observed with "soft" pads
	- –Oxide thins uniformly
	- Nanotopography propagates as variation in **surface height**
	- ⇒ Lithography concern
- • Ideal Planarization
	- Observed with "stiff" pads
	- – Nanotopography propagates as variation in **final oxide thickness**
	- Flat surface
	- \Rightarrow STI yield concern

5

2. CMP Planarization Length

Planarization of Dielectrics in Conventional CMP

- CMP achieve good local planarity (µm scale features)
- CMP creates global non-planarity (mm scale regions)

CMP Planarization Length

- Planarization length (PL) is strongly influenced by the polishing pad
	- intuition: PL as "flexing distance" of the pad/process
- PL also influenced by other parameters:

PL = **f** (pad, slurry, process, tool, ...)

where the details of the function **f** are not yet well understood

• PL characterizes the planarization capability of the CMP process – one *measures* PL by polishing special test wafers

Planarization Length Implications

• For structures less than planarization length (PL) \Rightarrow planarization (thinning) occurs

 \bullet For structures larger than planarization length \Rightarrow surfaces polish together; little or no planarization

9

Nanotopography & Planarization Length

10

3. Simulation of Nanotopography CMP

Nanotopography Modeling Methodology

Modeling Wafer Surface Nanotopography

CMP Film Thickness Evolution Model (I)

Density/Step-Height based CMP model^{1,2}

 $RR_{d} = K/p$; $RR_{d} = 0$ $t < t_c$

$$
RR_u=K+(1-\rho)^*(h_c/t)^*exp(-(t-t_c)/t) \qquad t>t_c
$$

 $RR_{d}=K-p^{*}(h_{c}/t)^{*}exp(-(t-t_{c})/t)$

Key ideas:

- •Local removal rates in the raised areas are weighted by the effective feature density
- • Local removal rates in raised and down areas exponentially change in time after a certain contact height is reached (which occurs at a contact time)
- •Removal rates of raised and down areas converge to blanket removal rate over time

¹ Brian Stine, et al.,"A closed form analytic model for ILD thickness variation in CMP processes," Proc CMP-MIC, Feb. 1997.

² Taber Smith, et al., "A CMP model combining density and time dependencies," Proc. CMP-MIC, Feb. 1999.

CMP Film Thickness Evolution Model (II)

Contact Wear CMP Model^{1,2}

RR $(x,y)=K_{p}^{*}p(x,y)^{*}v(x,y)$

RR: film removal rate $p(x,y)$: pressure

 K_p : Preston's coefficient $v(x,y)$: velocity

Key ideas:

- \bullet Use pressure-displacement equation to solve for pressures everywhere
- \bullet Use Preston's equation to calculate removal rates
- \bullet Advance boundary elements, and iterate to reach desired polish time

1 O. G. Chekina, et al., "Wear-contact problems and modeling of chemical mechanical polishing," JECS, Vol 145, June. 1998.

² T. Yoshida, "Three-dimensional chemical mechanical polishing process model by BEM," *ECS Conf.*, Oct. 1999.

Simulation Parameters

- \bullet Pre-CMP oxide thickness variation: 0 Angstroms
- \bullet Pre-CMP Step Height = 400 Angstroms
- \bullet Initial Thickness = 10000 Angstroms
- \bullet 60 second polish
- \bullet Three nanotopography lengths: 2, 5, 8 mm
- \bullet Density/Step-Height model: three planarization lengths (2, 5, 8 mm)
- •Contact Wear model: three Young's moduli (72, 147, 294 MPa)
- • **Hypothesis: Significant oxide thinning occurs when nanotopography is on a shorter scale than the planarization length**
- •**Hypothesis: Thinning increases with stiffer pads**

Simulated Post-CMP Surface

Surface profile, NL < PL

17

Model Analysis Results (I)

18

Model Analysis Results (II)

19

Model Analysis Results (III)

20

Observations

- \bullet Thinning increases with planarization length
- •Thinning increases with Young's modulus of pad
- \bullet Thinning increases with time
- • **Question: Can we confirm this observation experimentally?**
- **Question: How does the thinning effect impact a shallow trench isolation process?**

4. Nanotopography & CMP Experiments

Experimental Approach

- Key Idea:
	- Use wafers with variety of nanotopography lengths
	- Polish wafers using processes with variety of planarization lengths
	- Measure BOTH planarization length AND wafer results
- Comparison to Previous Experiments
	- Xu et al. (ESSL '98): showed CMP oxide thinning related to both original wafer height variations and pad properties
	- JEIDA experiments: splits on wafers and CMP pads, but no measurement of planarization length
- MIT/ADE Experiment Goals:
	- Verify nanotopography length vs. planarization length hypothesis
	- Provide a quantitative and predictive model for the impact of starting wafer nanotopography for any characterized CMP process

Process and Measurements

Nanotopography/CMP International CMP Symposium, Dec. 2000, Tokyo D. Boning

24

Starting Nanotopography Wafers

- \bullet Select lots of epi wafers fabricated with different starting wafer preparation recipes to generate a range of nanotopography features
	- Double-sided polish (DSP)
	- Single-sided polish (SSP)
	- ш Different **length scales** and **surface characteristics**
- \bullet Wafer characteristics:
	- \blacksquare DSP1 (47 wafers): small amplitude, medium length
	- DSP2 (10 wafers): doping striations
	- SSP1 (60 wafers): ring-like variation, long length
	- П SSP2 (50 wafers): clusters or "blotches" at shorter length
	- SSP3 (50 wafers): blotches at longer length

Double-Sided Polish Wafer (DSP1)

DSP1-2-1, Nanomapper image

- •~ 10 nm height variations
- •short wavelength

Single-Sided Polish Wafer (SSP1)

- •~ 20 nm height variations
- •very long wavelength (w/ noise)

Single-Sided Polish Wafer (SSP2)

SSP2-1-1, Nanomapper image

- •~ 50 nm height variations
- •short wavelength $\frac{-30}{50}$

Single-Sided Polish Wafer (SSP3)

SSP3-1-1, Nanomapper image

- •~ 30 nm height variations
- •long wavelength $\frac{1}{50}$

CMP Process/Pad Splits

- Planarization length depends on:
	- **pad** (pad type, pad stack, pad thicknesses, grooving, ...)
	- process (slurry, pressure, weak function of velocity)
	- tool? (dependency on head, table, tool configuration unclear)
- Approach: use pad as dominant factor, and measure
	- pad/process/tool to generate planarization length splits
	- ш **measure** planarization for any given CMP pad/process/tool
- Pad and Estimated (Expected) Planarization Length Ranges:
	- IC1000 solo: 7-10 mm
	- IC1400 (IC1000/SubaIV) stacked: 3-7 mm
	- Politex: < 1 mm

Fab Sequence – Per Process Split

31

MIT CMP Characterization Wafers - Planarization Length Measurement

 \bullet Wafers patterned with lines and spaces to generate different regions:

- **step and gradual density** - 10% to 100% raised area
- **pitch regions** -50% density, vary line/space
- Measurement of up and down areas enables extraction of:
	- **planarization length**
	- **step height dependencies**

Planarization Length – Extracted Results

• Three additional pad/process splits still being measured/analyzed

Analysis and Modeling

- 1. CMP Process Characterization Planarization Length
	- ш Extract for each process split using patterned wafer data
- 2. Starting Wafer Characterization Nanotopography Length
	- ш Need definition: power spectral density or other metric
- 3. Nanotopography and CMP Thinning Correlations
	- п Graphical (qualitative) correlations by images
	- ш Calculate 2D nanotopography vs. oxide-thickness correlation coefficient
	- п Test PL vs. NL length hypothesis
- 4. Evaluate different candidate CMP models (future work)
	- П Using pre-CMP data and extracted planarization length
		- predict post-CMP oxide thickness using CMP model
		- compare to measured post-CMP oxide thickness
- 5. Evaluate different nanotopography metrics and specs (future)

5. Experimental Results

Case 1: Short NL & Short PL (Soft Pad)

• **SSP2 wafer; Politex pad/process with PL = 1.9 mm**

Image Map for:SSP2-1-11, height variation

• **Starting nanotopography for SSP2 Wafer**

Image Map for:SSP2-1-11, oxide thickness removed

• **Oxide removed with Politex pad** ⇒ **wafer level CMP removal nonuniformity is observed**

37

Case 1: Short NL & Short PL (Soft Pad)

Split Details

- Politex pad (1.9mm planarization length)
- SSP2 wafer (short-range nanotopography)

Result

- Nanotopography *not* transmitted into surfaceoxide film
- Filtered data used to removewafer scale oxide removal non-uniformity

Case 1: Short NL & Short PL (Soft Pad)

- SSP2 wafer; Politex pad, process has PL = 1.9 mm
- Variation for central 100mm portion of wafer
	- Deviation in each normalized: full range variation around each mean shown

39

Case 2: Short NL & Medium PL (Stack Pad)

• **SSP2 wafer; IC1400 stacked pad/process with PL = 3.4 mm**

Image Map for:SSP2-1-18, height variation

• **Starting nanotopography for SSP2 Wafer**

• **Oxide removed with IC1400 stacked pad** ⇒ **slight nanotopography is superimposed on wafer level CMP nonuniformity**

40

Case 2: Short NL & Medium PL (Stack Pad)

Split Details

- IC1400 stacked pad (3.4mm planarization length)
- SSP2 wafer (short-range nanotopography)

Result

- Only limited nanotopography propagation into oxide film
- Filtered data used (removes wafer scale polish nonuniformity)

41

Case 2: Short NL & Medium PL (Stack Pad)

- SSP2 wafer; IC1400 stacked pad, process has PL = 3.4 mm
- Variation for central 100mm portion of wafer
	- Deviation in each normalized: full range variation around each mean shown

42

Case 3: Short NL & Long PL (Stiff Pad)

• **SSP2 wafer; IC1000 solo pad/process with PL = 8.5 mm**

Image Map for:SSP2-1-17, height variation

• **Starting nanotopography for SSP2 Wafer**

Image Map for:SSP2-1-17, oxide thickness removed

• **Oxide removed with IC1000 solo pad** ⇒ **nanotopography is superimposed on wafer level CMP nonuniformity**

43

Case 3: Short NL & Long PL (Stiff Pad)

Split Details

- IC1000 solo pad (8.5mm planarization length)
- SSP2 wafer (short-range nanotopography)

Result

- Nanotopography *propagates* strongly into oxide film
- Filtered data used (removes wafer scale polish nonuniformity)

Case 3: Short NL & Long PL (Stiff Pad)

• SSP2 wafer; IC1000 solo pad, process has PL = 8.5 mm

- Variation for central 100mm portion of wafer
	- Deviation in each normalized: full range variation around each mean shown

45

Propagation of Nanotopography to Oxide During CMP – Correlation and Std. Dev.

Correlation Between Nanotopography Height Variation and Oxide Removed in CMP

- •• Calculate a correlation coefficient c over 2D map (i,j) to capture "similarity" in the **shape of the variation** (% deviations around each mean) between:
	- $-$ x: nanotopography height

- *y*: oxide removed:
\n
$$
C = \frac{\sum_{i} \sum_{j} (x_{ij} - \mu_x)(y_{ij} - \mu_y)}{\sigma_x \sigma_y}
$$

•• $c \rightarrow 0$: no correlation

 $c \rightarrow 1$: complete (positive) correlation

 $c \rightarrow 1$: complete correlation (inversion)

•• Calculate the standard deviation σ_{x} and σ_{y} to summarize the *magnitude of the variation* in the nanotopography and the polished oxide thickness, respectively

Nanotopography – Oxide: Correlations

Filtered to remove wafer level trend

48

Nanotopography – Oxide: Std. Devs.

transmitted height: $\sigma_{ox_removed}$ / σ_{nano}

 $\sigma_{ox_removed}$ (nm) / σ_{nano} (nm)

49

6. Nanotopography Effect on Shallow Trench Isolation (STI) CMP

Example of Film Color Variation after STI Polishing

Film Color Variation after STI-CMP Direct Polishing

- • Surface nanotopography could impact many sites
- • Nanotopography features will be random in size and location
- • Potential device performance degradation and yield loss in the related dies

Xia et al., "Effect of Nanotopology on CMP," 1999 Int. CMP Symposium

Nanotopography Impact on STI

- • Nanotopography causes problems in the polishing of STI structures:
	- Difficult to clear oxide
	- Excessive nitride overpolishing
- There are many sources of variation in CMP. Nanotopography can create difficult problems compared to:
	- Wafer scale CMP polish rate nonuniformity
	- Die scale pattern dependencies

Shallow Trench Isolation (STI) Process Flow (Ideal Case)

• **Polished Starting Wafer** • **Nitride/Oxide deposition, pattern, etch and trench etch** • **Trench oxide deposition** • **CMP of overburden oxide**Nitride/Oxide Pad StackSilicon SubstrateM Silicon Dioxide

53

Problem #1: Difficulty of Clearing

- Oxide polish intended to "stop" on nitride but *must* clear above all nitride structures (active areas) in order to yield
- Consider trench/active areas which are in a recessed region smaller than the planarization length due to nanotopography
- \Rightarrow CMP pad/process does not bend into region and fails to clear oxide

Problem #2: Excessive Nitride Thinning

- To clear oxide, one must over-polish substantially
- Because the CMP pad/process does not bend into recessed region, one must over-polish into the nearby nitride in order to clear oxide

55

Compare: Wafer Level Rate Nonuniformity

- Consider 500nm oxide step; 5% rate nonuniformity over 200mm wafer
- Variation occurs over distance > PL, so pad can remove oxide without excessive nitride thinning

Compare: Pattern Density Effect

- Regions with different pattern densities will polish at different rates, leading to uneven clearing of overburden oxide across the chip
- • Serious concern attacked by:
	- dummy fill
	- oxide:nitride selectivity
	- moving to stiffer pads to better average density [⇒] worsens nanotopography effect!

57

Conclusions

- Nanotopography can be a serious concern for STI, depending on the specifics of the nanotopography and the CMP process
- CMP process planarization length (PL) is key parameter affecting how thin films over nanotopography evolve during polishing
- Approaches to modeling this effect: density and/or contact wear
- Nanotopography/CMP experiments
	- Wafer splits: range of nanotopography length scales
	- **Process splits: range of planarization lengths**
	- Preliminary results: data supports hypothesis PL vs. NL
- Future work
	- Full data analysis and modeling
	- **Implications for nanotopography metrics**
	- Modeling and experiments to study nanotopography impact on STI structures

59