Characterization and Modeling of Nanotopography Effects on CMP

Prof. Duane Boning, Brian Lee Microsystems Technology Laboratories Massachusetts Institute of Technology, Cambridge, MA

> Win Baylies*, Noel Poduje, Pat Hester Baytech Group*, ADE Corp.

John Valley, Chris Koliopoulos ADE Phase Shift

Dale Hetherington, Sandia National Labs

boning@mit.edu, phone: 617-253-0931 http://www-mtl.mit.edu/Metrology

Outline

- 1. What is Nanotopography?
 - Effect of nanotopography during CMP
- 2. CMP Planarization Length
 - Hypothesis: CMP planarization length (PL) determines how thin films over nanotopography evolve during polishing
- 3. Modeling of Nanotopography Effects During CMP
- 4. Nanotopography/CMP Experiments
 - Process and measurements
 - Wafers: range of nanotopography features/length scales
- 5. Experimental results
- 6. Nanotopography and STI CMP
- 7. Conclusions

What is Nanotopography?

"Nanotopography" refers to wafer surface variations with:

- 1. Lateral length scales from 0.2 mm to 20 mm
- 2. Height variations ~ 10 to 100 nm

Nanotopography Map: 8" SSP Silicon Epi Wafer

Filtered data measured using a NanoMapper[™] production nanotopography tool at ADE Phase Shift in Tucson, AZ

SSP wafer, Diameter Scan (Filtered Data) using NanoMapper[™]

*Measured using a NanoMapper[™] production nanotopography tool at ADE Phase Shift in Tucson, AZ

4 Nanotopography/CMP

Nanotopography Propagation During CMP

Xu et al, Electrochemical and Solid-State Letters, 1, 181, 1998.

- Conformal Polishing
 - Observed with "soft" pads
 - Oxide thins uniformly
 - Nanotopography propagates as variation in *surface height*
 - \Rightarrow Lithography concern
- Ideal Planarization
 - Observed with "stiff" pads
 - Nanotopography propagates as variation in *final oxide thickness*
 - Flat surface
 - \Rightarrow STI yield concern

5 Nanotopography/CMP

2. CMP Planarization Length

Planarization of Dielectrics in Conventional CMP

- CMP achieve good local planarity (μm scale features)
- CMP creates global non-planarity (mm scale regions)

CMP Planarization Length

- Planarization length (PL) is strongly influenced by the polishing pad
 - intuition: PL as "flexing distance" of the pad/process
- PL also influenced by other parameters:

PL = f(pad, slurry, process, tool, ...)

where the details of the function \boldsymbol{f} are not yet well understood

PL characterizes the planarization capability of the CMP process

 one measures PL by polishing special test wafers

Planarization Length Implications

For structures less than planarization length (PL)
 ⇒ planarization (thinning) occurs

For structures larger than planarization length
 ⇒ surfaces polish together; little or no planarization

9

Nanotopography & Planarization Length

10 Nanotopography/CMP

3. Simulation of Nanotopography CMP

Nanotopography Modeling Methodology

Modeling Wafer Surface Nanotopography

D. Boning

CMP Film Thickness Evolution Model (I)

Density/Step-Height based CMP model^{1,2}

 $RR_{u}=K/\rho ; RR_{d}=0 \qquad t < t_{c}$

$$RR_u = K + (1-\rho)^* (h_c/t)^* exp(-(t-t_c)/t)$$
 $t > t_c$

 $RR_d = K - \rho^* (h_c/t)^* exp(-(t-t_c)/t)$

K: blanket film polish rate ρ : effective feature density z_1 : initial step height h_c : contact height z_0 : initial film thickness t_c : contact timet: time constantt: polish time

Key ideas:

- Local removal rates in the raised areas are weighted by the effective feature density
- Local removal rates in raised and down areas exponentially change in time after a certain *contact height* is reached (which occurs at a *contact time*)
- Removal rates of raised and down areas converge to blanket removal rate over time

¹ Brian Stine, et al.,"A closed form analytic model for ILD thickness variation in CMP processes," *Proc CMP-MIC*, Feb. 1997.

² Taber Smith, et al., "A CMP model combining density and time dependencies," Proc. CMP-MIC, Feb. 1999.

CMP Film Thickness Evolution Model (II)

Contact Wear CMP Model^{1,2}

RR $(x,y) = K_p^* p(x,y)^* v(x,y)$ RR: film removal rate p(x,y): pressure

 K_p : Preston's coefficient v(x,y): velocity

Key ideas:

- Use pressure-displacement equation to solve for pressures everywhere
- Use Preston's equation to calculate removal rates
- Advance boundary elements, and iterate to reach desired polish time

¹ O. G. Chekina, et al., "Wear-contact problems and modeling of chemical mechanical polishing," *JECS*, Vol 145, June. 1998.

² T. Yoshida, "Three-dimensional chemical mechanical polishing process model by BEM," ECS Conf., Oct. 1999.

Simulation Parameters

- Pre-CMP oxide thickness variation: 0 Angstroms
- Pre-CMP Step Height = 400 Angstroms
- Initial Thickness = 10000 Angstroms
- 60 second polish
- Three nanotopography lengths: 2, 5, 8 mm
- Density/Step-Height model: three planarization lengths (2, 5, 8 mm)
- Contact Wear model: three Young's moduli (72, 147, 294 MPa)
- Hypothesis: Significant oxide thinning occurs when nanotopography is on a shorter scale than the planarization length
- Hypothesis: Thinning increases with stiffer pads

Simulated Post-CMP Surface

17 Nanotopography/CMP

Model Analysis Results (I)

18 Nanotopography/CMP

Model Analysis Results (II)

19

Nanotopography/CMP

Model Analysis Results (III)

20

Nanotopography/CMP

Observations

- Thinning increases with planarization length
- Thinning increases with Young's modulus of pad
- Thinning increases with time
- Question: Can we confirm this observation experimentally?
- Question: How does the thinning effect impact a shallow trench isolation process?

4. Nanotopography & CMP Experiments

Experimental Approach

- Key Idea:
 - Use wafers with variety of nanotopography lengths
 - Polish wafers using processes with variety of planarization lengths
 - Measure BOTH planarization length AND wafer results
- Comparison to Previous Experiments
 - Xu et al. (ESSL '98): showed CMP oxide thinning related to both original wafer height variations and pad properties
 - JEIDA experiments: splits on wafers and CMP pads, but no measurement of planarization length
- MIT/ADE Experiment Goals:
 - Verify nanotopography length vs. planarization length hypothesis
 - Provide a quantitative and predictive model for the impact of starting wafer nanotopography for any characterized CMP process

Process and Measurements

24 Nanotopography/CMP

International CMP Symposium, Dec. 2000, Tokyo

D. Boning

Starting Nanotopography Wafers

- Select lots of epi wafers fabricated with different starting wafer preparation recipes to generate a range of nanotopography features
 - Double-sided polish (DSP)
 - Single-sided polish (SSP)
 - Different length scales and surface characteristics
- Wafer characteristics:
 - DSP1 (47 wafers): small amplitude, medium length
 - DSP2 (10 wafers): doping striations
 - SSP1 (60 wafers): ring-like variation, long length
 - SSP2 (50 wafers): clusters or "blotches" at shorter length
 - SSP3 (50 wafers): blotches at longer length

Double-Sided Polish Wafer (DSP1)

DSP1-2-1, Nanomapper image

- ~ 10 nm height variations
- short wavelength

Single-Sided Polish Wafer (SSP1)

- ~ 20 nm height variations
- very long wavelength (w/ noise)

Single-Sided Polish Wafer (SSP2)

SSP2-1-1, Nanomapper image

- ~ 50 nm height variations
- short wavelength

D. Boning

Single-Sided Polish Wafer (SSP3)

- ~ 30 nm height variations
- long wavelength

CMP Process/Pad Splits

- Planarization length depends on:
 - pad (pad type, pad stack, pad thicknesses, grooving, ...)
 - process (slurry, pressure, weak function of velocity)
 - tool? (dependency on head, table, tool configuration unclear)
- Approach: use pad as dominant factor, and measure
 - pad/process/tool to generate planarization length splits
 - measure planarization for any given CMP pad/process/tool
- Pad and Estimated (Expected) Planarization Length Ranges:
 - IC1000 solo: 7-10 mm
 - IC1400 (IC1000/SubalV) stacked: 3-7 mm
 - Politex: < 1 mm</p>

Fab Sequence – Per Process Split

sette ID:											
sette Slot/	Wafer ID	CODE*	Wafer Type	Polish Time,	Polish Time, Pre-polish						
Run #				sec	Thickness, um	Thickness, um					
		D1	Dummy								
		D2	Dummy								
		D3	Dummy								
1		B1	Blanket Rate								
2		B2	Blanket Rate								
Measure Blanket Wafers (see step instructions)											
3		W1	DSP								
4		W4	SSP1								
5		W7	SSP2								
6		B3	Blanket Rate								
7		W10	SSP3								
8		W2	DSP								
9		W5	SSP1								
10		P1	Patterned								
11		B4	Blanket Rate								
12		W8	SSP2								
13		W11	SSP3								
14		W3	DSP								
15		C2	Patterned								
16		B5	Blanket Rate								
17		W6	SSP1								
18		W9	SSP2								
19		W12	SSP3								
20		W13	SSP4								
21		B6	Blanket Rate								

31 Nanotopography/CMP

MIT CMP Characterization Wafers -Planarization Length Measurement

- Wafers patterned with lines and spaces to generate different regions:
 - step and gradual density
 10% to 100% raised area
 - pitch regions
 50% density, vary line/space
- Measurement of up and down areas enables extraction of:
 - planarization length
 - step height dependencies

Planarization Length – Extracted Results

Pad/Process Split	Planarization Length		
Politex	1.9 mm		
IC1400/Stacked	3.4 mm		
IC1010/Stacked	6.5 mm		
IC1000/Solo	8.5 mm		
IC1010/Solo	9.7 mm		

• Three additional pad/process splits still being measured/analyzed

Analysis and Modeling

- 1. CMP Process Characterization Planarization Length
 - Extract for each process split using patterned wafer data
- 2. Starting Wafer Characterization Nanotopography Length
 - Need definition: power spectral density or other metric
- 3. Nanotopography and CMP Thinning Correlations
 - Graphical (qualitative) correlations by images
 - Calculate 2D nanotopography vs. oxide-thickness correlation coefficient
 - Test PL vs. NL length hypothesis
- 4. Evaluate different candidate CMP models (future work)
 - Using pre-CMP data and extracted planarization length
 - predict post-CMP oxide thickness using CMP model
 - compare to measured post-CMP oxide thickness
- 5. Evaluate different nanotopography metrics and specs (future)

5. Experimental Results

Case 1: Short NL & Short PL (Soft Pad)

• SSP2 wafer; Politex pad/process with PL = 1.9 mm

Image Map for:SSP2-1-11, height variation

 Starting nanotopography for SSP2 Wafer

 Oxide removed with Politex pad
 ⇒ wafer level CMP removal nonuniformity is observed

37 Nanotopography/CMP

Case 1: Short NL & Short PL (Soft Pad)

Split Details

- Politex pad (1.9mm planarization length)
- SSP2 wafer (short-range nanotopography)

Result

- Nanotopography not transmitted into surface oxide film
- Filtered data used to remove wafer scale oxide removal non-uniformity

Case 1: Short NL & Short PL (Soft Pad)

- SSP2 wafer; Politex pad, process has PL = 1.9 mm
- Variation for central 100mm portion of wafer
 - Deviation in each normalized: full range variation around each mean shown

39 Nanotopography/CMP

Case 2: Short NL & Medium PL (Stack Pad)

SSP2 wafer; IC1400 stacked pad/process with PL = 3.4 mm

Image Map for:SSP2-1-18, height variation

 Starting nanotopography for SSP2 Wafer Image Map for:SSP2-1-18, oxide thickness removed

 Oxide removed with IC1400 stacked pad
 ⇒ slight nanotopography is superimposed on wafer level CMP nonuniformity

40 Nanotopography/CMP

Case 2: Short NL & Medium PL (Stack Pad)

Split Details

- IC1400 stacked pad (3.4mm planarization length)
- SSP2 wafer (short-range nanotopography)

Result

- Only limited nanotopography propagation into oxide film
- Filtered data used (removes wafer scale polish nonuniformity)

41 Nanotopography/CMP

Case 2: Short NL & Medium PL (Stack Pad)

- SSP2 wafer; IC1400 stacked pad, process has PL = 3.4 mm
- Variation for central 100mm portion of wafer
 - Deviation in each normalized: full range variation around each mean shown

42 Nanotopography/CMP

Case 3: Short NL & Long PL (Stiff Pad)

• SSP2 wafer; IC1000 solo pad/process with PL = 8.5 mm

Image Map for:SSP2-1-17, height variation

 Starting nanotopography for SSP2 Wafer

 Oxide removed with IC1000 solo pad
 ⇒ nanotopography is superimposed on wafer level CMP nonuniformity

43 Nanotopography/CMP

Case 3: Short NL & Long PL (Stiff Pad)

Split Details

- IC1000 solo pad (8.5mm planarization length)
- SSP2 wafer (short-range nanotopography)

Result

- Nanotopography *propagates* strongly into oxide film
- Filtered data used (removes wafer scale polish nonuniformity)

Case 3: Short NL & Long PL (Stiff Pad)

- SSP2 wafer; IC1000 solo pad, process has PL = 8.5 mm
- Variation for central 100mm portion of wafer
 - Deviation in each normalized: full range variation around each mean shown

Propagation of Nanotopography to Oxide During CMP – Correlation and Std. Dev.

Correlation Between Nanotopography Height Variation and Oxide Removed in CMP

- Calculate a correlation coefficient c over 2D map (*i*,*j*) to capture "similarity" in the shape of the variation (% deviations around each mean) between:
 - x: nanotopography height

- y: oxide removed:

$$C = \frac{\sum_{i=j}^{\infty} (x_{ij} - \mu_x) (y_{ij} - \mu_y)}{\sigma_x \sigma_y}$$

• $c \rightarrow 0$: no correlation

 $c \rightarrow$ 1: complete (positive) correlation

 $c \rightarrow -1$: complete correlation (inversion)

• Calculate the standard deviation σ_x and σ_y to summarize the *magnitude of the variation* in the nanotopography and the polished oxide thickness, respectively

Nanotopography – Oxide: Correlations

Filtered to remove wafer level trend

48 Nanotopography/CMP

Nanotopography – Oxide: Std. Devs.

transmitted height: $\sigma_{ox_removed}$ / σ_{nano}

 $\sigma_{ox_removed}$ (nm) / σ_{nano} (nm)

Z	$\begin{array}{c} \text{SSP1} \\ \text{long spatial } \lambda \end{array}$	0.66 0.91/1.38	0.59 0.82/1.40	0.66 0.86/1.31	1.19 1.54/1.29	1.02 1.28/1.26	
anotop Wafer	SSP3	0.48 0.86/1.79	0.51 0.92/1.81	0.58 1.05/1.81	1.09 1. 90/1.74	0.84 1.48/1.76	
ograph Type	DSP1	0.40 0.88/2.19	0.49 1.19/2.43	0.67 1.41/2.10	0.86 2.09/2.44	0.83 1.78/2.15	
۲۲ ۲۲	SSP2	0.10	0.17	0.37	0.62	0.76	
short spatial λ		0.89/9.03	1.33/7.88	2.70/7.29	4.53/7.27	5.65/7.48	
		1.9 mm	3.4 mm	6.4 mm	8.4 mm	9.7 mm	
		Politex	IC1400	IC1010	IC1000 solo	IC1010 solo	
Filtered to remove		Planarization Length / Pad					

49 Nanotopography/CMP

6. Nanotopography Effect on Shallow Trench Isolation (STI) CMP

Example of Film Color Variation after STI Polishing

Film Color Variation after STI-CMP Direct Polishing

- Surface nanotopography could impact many sites
- Nanotopography features will be random in size and location
- Potential device performance degradation and yield loss in the related dies

Xia et al., "Effect of Nanotopology on CMP," 1999 Int. CMP Symposium

Nanotopography Impact on STI

- Nanotopography causes problems in the polishing of STI structures:
 - Difficult to clear oxide
 - Excessive nitride overpolishing
- There are many sources of variation in CMP. Nanotopography can create difficult problems compared to:
 - Wafer scale CMP polish rate nonuniformity
 - Die scale pattern dependencies

Shallow Trench Isolation (STI) Process Flow (Ideal Case)

 Polished Starting Wafer Nitride/Oxide deposition, pattern, etch and trench etch Trench oxide deposition CMP of overburden oxide Nitride/Oxide Pad Stack Silicon Substrate Silicon Dioxide

53 Nanotopography/CMP

Problem #1: Difficulty of Clearing

- Oxide polish intended to "stop" on nitride but *must* clear above *all* nitride structures (active areas) in order to yield
- Consider trench/active areas which are in a recessed region smaller than the planarization length due to nanotopography
- \Rightarrow CMP pad/process does not bend into region and fails to clear oxide

Problem #2: Excessive Nitride Thinning

- To clear oxide, one must over-polish substantially
- Because the CMP pad/process does not bend into recessed region, one must over-polish into the nearby nitride in order to clear oxide

55 Nanotopography/CMP

Compare: Wafer Level Rate Nonuniformity

- Consider 500nm oxide step; 5% rate nonuniformity over 200mm wafer
- Variation occurs over distance > PL, so pad can remove oxide without excessive nitride thinning

Compare: Pattern Density Effect

- Regions with different pattern densities will polish at different rates, leading to uneven clearing of overburden oxide across the chip
- Serious concern attacked by:
 - dummy fill
 - oxide:nitride selectivity
 - moving to stiffer pads to better average density ⇒ worsens nanotopography effect!

57 Nanotopography/CMP

Conclusions

- Nanotopography can be a serious concern for STI, depending on the specifics of the nanotopography and the CMP process
- CMP process planarization length (PL) is key parameter affecting how thin films over nanotopography evolve during polishing
- Approaches to modeling this effect: density and/or contact wear
- Nanotopography/CMP experiments
 - Wafer splits: range of nanotopography length scales
 - Process splits: range of planarization lengths
 - Preliminary results: data supports hypothesis PL vs. NL
- Future work
 - Full data analysis and modeling
 - Implications for nanotopography metrics
 - Modeling and experiments to study nanotopography impact on STI structures

