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ABSTRACT

 

As parametric variation increases in importance with
shrinking dimensions and increasing integration, the need to
understand and manage such variation is becoming critical.
Statistical metrology is a collection of tools and techniques
for the systematic characterization and study of variation in
semiconductor manufacturing. In addition to methods for
collecting large volumes of data, important analytic
approaches are being developed (1) to decompose parameter
distributions into wafer-level, die-level, and wafer-die inter-
action contributions; and (2) to model the spatial effect of
layout, process, or other factors on observed variation. Sta-
tistical metrology has been used to study interlevel dielectric
thickness and polysilicon critical dimension variation, and
new applications to yield improvement, design rule genera-
tion, and variation impact analysis will make statistical
metrology an important part of future manufacturing and
design practice.

 

1. INTRODUCTION - PARAMETRIC VARIATION

 

Parametric variation is an increasing concern in inte-
grated circuit fabrication. Stringent control of both device
and interconnect structures, such as polysilicon critical
dimension (channel length) or interlevel dielectric thick-
nesses is critical not only for adequate yield, but also to
achieve increasingly aggressive performance and reliability
requirements. Understanding and assessing such variation,
however, is difficult: variation may depend on process,
equipment, and specifics of the layout patterns all con-
founded together. Here we discuss an emerging “statistical
metrology” approach which provides tools and techniques
for measuring, isolating, and modeling 

 

variation

 

 in semicon-
ductor manufacturing [1, 2, 3]. We will first discuss the
nature and scope of parameter variation under study, and
then describe experimental design and analytic tools for
understanding this variation. Finally, we examine current and
future applications of statistical metrology to solve manufac-
turing and design problems.

Variation in some physical or electrical parameter may
manifest itself in several ways. One key characteristic of
variation is its scope in time and in space, as shown in
Figure 1, where we see that the variation appears at a number
of different scales. The separation of variation by unique sig-

natures at different scales is a key feature enabling one to
analyze such variation. Process control has often been con-
cerned with variation occurring from lot-to-lot or wafer-to-
wafer. That is, some measure of a parameter for the lot may
vary from one lot to the next as the equipment, incoming
wafer batch, or consumable material drifts or undergoes dis-
turbances. In addition to temporal variation, different spatial
variation occurs at different scales. In batch processes, for
example, the spatial variation from one wafer to the next
(e.g. along a polysilicon deposition tube) may be a concern.
In equipment design and process optimization, spatial uni-
formity across the wafer is a typical goal and specification.
For example, in most deposition or etch processes, unifor-
mity on the order of 5% across the wafer can be achieved; if
one examines the value for some structural parameter taken
at the same point on every die on the wafer, a fairly tight dis-
tribution results. At a smaller scale, on the other hand, addi-
tional variation issues may arise. In particular, the variation
within individual die on the wafer is emerging as a major
concern, in large part because of potential yield and circuit
performance degradation. An important observation is that
knowing something about one scale of variation says little
about the variation at the other scales. This is because differ-
ent physical causes are at work at each scale; e.g. wafer level
uniformity in plasma etch is driven by macroscopic tool
design issues, while die-level pattern-dependencies (which
may in fact be larger than wafer variation) arise through
details of the etch process conditions.

 

Figure 1. Spatial and temporal variation scales.
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The second key characteristic of variation is systematic
versus random constituents in the parameter distribution. An
important goal is to isolate those systematic, repeatable, or
deterministic contributions to the variation from a set of
deeply confounded measurements. A set of dielectric thick-
ness measurements from many locations on one wafer fol-
lowing planarization by chemical mechanical polishing is
collected; without detailed understanding of the individual
contributions, the resulting distribution, shown in Figure 2,
might be considered to be “random” and large. Better under-
standing of the specific contributions to the distribution
enables one to focus variation reduction efforts more appro-
priately, or to design the device or circuit to compensate for
the expected variation.

 

2. TEST STRUCTURE AND EXPERIMENTAL 
DESIGN

 

Analysis and deconvolution of spatial variation requires
carefully designed test structures and experiments. For
example, electrical test structure to study the dependence of
ILD thickness on line width or other layout factors should
examine different combinations of these layout factors [4].
Test chip and short flow experimental loops are an integral
part of statistical metrology. For example, screening experi-
ments which explore a large number of factors [4], or envi-
ronmental/modeling experiments which mimic realistic
circuits [5], can be designed as illustrated in Figure 3. Once
fabricated, large volumes of electrical or optical data can be
collected to enable variation analysisVARIATION ANALY-
SIS

 

2.1  Variation Decomposition

 

The first stage in analyzing parameter variation is to
break that variation down into smaller components which
correspond to typical variation sources. In particular, spatial
variation will usually consist of wafer-level (or across-wafer)
variation and die-level (or within-die) variation, as well as
other elements. As pictured in Figure 4, statistical and signal
processing methods can be employed to utilize the different
spatial scales of these variations to achieve decomposition
[6]. The second stage can then proceed, in which the func-
tional dependencies of the variation can be explored and

modeled. The variation decomposition approach of Figure 4
can be expressed in the framework of an additive model [7]
in which the total variation is represented as the sum of indi-
vidual variation terms:

. (1)

In Equation 1, 

 

x 

 

and 

 

y

 

 are spatial coordinates on the wafer
while 

 

f

 

WLV

 

 

 

is the wafer-level variation, 

 

f

 

DLV

 

 

 

is the die-level

variation,  represents the wafer-die interaction

terms, and 

 

ε

 

 corresponds to the residual terms. Variation
decomposition is able to (1) identify systematic spatial com-
ponents in the variation, and (2) quantify these variation
components.

Consider again the ILD thickness measurements from
Figure 2. Knowing the spatial location of those measure-
ments enables the estimation of wafer-level variation by a
variety of methods include moving average filters, spline-
based approaches, and regression to assumed parametric
forms [6]. These approaches take advantage of assumptions
on the shape of such variation: gradual trends are typical, or
known functional forms are used (e.g. radial dependencies,
sloped planes, or combinations of these). The wafer level
ILD variation extracted using a moving average estimator is
shown in Figure 5. Also shown in Figure 5 is the extracted
wafer level variation for the same test mask planarized on a
different CMP tool type; the resulting wafer level variation is
very different, consisting of a “slanted plane” nonuniformity.

When die-level spatial dependencies are examined, the
key assumption is that the intended chip pattern imposes rep-
etition among the many die on any one wafer. The decompo-
sition methods exploit this repetition. Spatial repetition
imposed by the stepping of the die across the wafer suggests
the use of frequency-based analysis methods. A 2D spatial
Fourier transform approach [3], for example, results in isola-
tion of those components corresponding to the fundamental
die frequency and its harmonics. In the case of our ILD vari-
ation example, the resulting “die signature” for the particular
mask used in shown in Figure 5. This extracted die pattern is
exactly the same for all die on the wafer, but may vary from
one wafer to the next under the influence of other conditions.
Also shown in Figure 5 is the die-level variation pattern
resulting from polishing an a different tool type; while the
two wafer-level nonuniformities are very different, the die-
pattern signatures are nearly identical. .

 

Figure 2. Histogram of normalized ILD thickness 
measurements taken on a wafer following oxide CMP.
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An important interaction may occur between the “pure”
die level variation pattern and wafer-level dependencies. For
example, the die-level pattern may be attenuated or accentu-
ated depending on the location of the die on the wafer. At the
wafer scale, the center of the wafer is often better controlled
and more uniform, while the edges of the wafer experience
significant “bull’s eye” or other nonuniformities. As a result,
the die-level pattern dependencies may be significantly
worse near the edge of the wafer. If one is concerned about
the total range of variation, then, a multiplicative or other

interactive factor between the die-pattern and wafer location
may be a very large concern. More work is needed to under-
stand the relationships between the interaction and the con-
stituent die and wafer components. Spatial modeling
approaches include methods which examine the residuals in
Figure 4 for remaining quasi-periodic energy [6], or that use
modified ANOVA models that mix factor and spatial location
effects [8]. In the case of poly critical dimension, a multipli-
cative model has been proposed by Yu et al. [9] to account
for wafer-die interaction.

 

Figure 3. Example test chip experimental designs. A screening experiment (left) explores the influence of local layout 
factors on the ILD thickness of individual structures. An environmental experiment (right) more closely mimics an 

ASIC layout, and also explores the effect of separation distance between structures and nearby dummy fill.
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Figure 4. Variation Decomposition and Modeling Flow Diagram
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The decomposition approaches as outlined above are sum-
marized in Figure 6 which shows the wafer, die, and wafer-
die variation distribution in (normalized) ILD thicknesses
resulting from deconvolution and decomposition. It is impor-
tant to note that the wafer, die, and wafer-die distributions
are not random; the complicated shape of these distributions
are a function of the variation itself as well as the test struc-
ture and experimental design factors used to study them. On
the other hand, the residual component contains both truly
random variation or other variation factors not compre-
hended in the analysis. 

 

Figure 5. Comparison of wafer and die-level variation for two different CMP tools.
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Figure 6. Components of ILD thickness variation after 
variation decomposition corresponding to the raw data 
in Figure 2. The wafer, die, and wafer-die histograms 
correspond to systematic components in the raw data, 

while the remaining narrow residual component is 
random.
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2.2  Variation Modeling

 

The methods described above enable the decomposition
of variation into different components. While such decompo-
sition alone is very useful in directing reduction efforts, com-
paring equipment, and gaining insight, it is also desirable to
build explicit models that capture the functional dependency
between the parameter of interest and the contributing fac-
tors. Methods for such modeling are just beginning to
emerge in statistical metrology. One approach is to examine
the extracted die-level variation for factor dependencies,
where the factors are typically related to features of the lay-
out or chip pattern (e.g. line widths, line spacing, orientation
of features, proximity to nearby structures, etc.). A simple
analysis of variance (ANOVA) approach can be used to com-
pare the influence of individual factors, explore interactions
between those factors, and construct models [4]. Manipula-
tion of the underlying factors may be appropriate to con-
struct good models. For example, the line width and line
spacing factors in ILD thickness variation studies may be
efficiently modeled in terms of local or global layout density
parameters, resulting in a compact model as pictured in
Figure 7. Empirical models such as these can feed design
rule generation (e.g. specify required layout density to bound
within die topography ranges), or can be integrated into
quasi-empirical simulation tools. 

The development of methods for simultaneous modeling
of pattern and spatial dependencies is an active area of
research. A modified ANOVA approach which captures both
the systematic (repeatable or shared) die-level variation and
the die-wafer interaction terms has recently been proposed
[8]. In this approach, ANOVA models are constructed for
each die of interest, and then the ANOVA coefficients are
compared and analyzed for their spatial dependencies. For
example, the analysis of polysilicon critical dimension (poly

CD) and its relationship to Id

 

SAT

 

 variation is crucial to
understanding chip or circuit performance impact. For each
measured die, an ANOVA model:

(2)

is developed where 

 

µ

 

, 

 

α

 

F

 

, 

 

α

 

I

 

, 

 

α

 

S

 

, 

 

β

 

H

 

, 

 

β

 

V

 

, 

 

γ

 

WIDE

 

, and 

 

γ

 

NAR-

ROW

 

 are constants which are fitted to the data. In this type of
model, the expected Id

 

sat

 

 value for a particular transistor
with a given set of layout factors is determined by selecting
the appropriate constant term from each brace and adding
each term together. For example, if a transistor is isolated,
horizontally oriented, and wide, then the expected Id

 

sat

 

 value
is  

 

µ

 

 + 

 

α

 

I

 

 + 

 

β

 

H

 

 + 

 

γ

 

WIDE

 

. A typical ANOVA model (normal-
ized) for a die near the center of the wafer is:

(3)

and the ANOVA statistics for this particular die are shown in
Table I. The ANOVA table reveals that spacing (fingered vs.

isolated vs. stacked) and geometric orientation (horizontal
vs. vertical) are the most significant layout factors while
channel width is not significant as judged by the Pr(F) col-
umn (under a few assumptions of normality, there values
indicate the probability that the observed differences
between groups could have arisen by chance alone). The
model coefficients, 

 

µ

 

, 

 

α

 

F

 

, 

 

α

 

I

 

, 

 

α

 

S

 

, 

 

β

 

H

 

, and 

 

β

 

V

 

, can also be
examined as a function of die spatial location on the wafer.
By looking at the spatial dependence of each factor type (e.g.
geometric orientation versus spacing in this particular case),
possible different physical and spatial dependencies can be
highlighted. For example, in this case it was found that iso-
lated poly CD lines have a positive dependence on radial
wafer position while the stacked and fingered devices have a
negative dependence on radial position. More methods are
needed that mix factor modeling with spatial distribution or 

 

Figure 7. Model of ILD thickness as a function of layout 
density, constructed by analysis of data from the (right) 

test die in Figure 3.
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Table I. ANOVA Table for Id

 

SAT

 

 model related to poly 
CD layout factors for an example die, corresponding (3)

Factor DF
Sum of 

Sq.
Mean 

Sq.
F-

value Pr(F)

 

spacing 2 6964 3482 81.41 0.0000

geom. ori-
ent.

1 745.8 745.8 17.44 0.0003

width 1 56.8 56.8 1.32 0.2614

Residuals 22 940.96 42.77 - -

IdSAT µ

αF

α I

αS 
 
 
 
  βH

βV 
 
  γWIDE

γNARROW 
 
 

+ + +=

IdSAT 0.409

9.375

10.630

1.254 
 
 
 
 

3.162–

3.162 
 
  1.641–

1.641 
 
 

+ + +=
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parameter dependencies on other factors, including time,
process parameters, or other exogenous variables.

 

3. STATISTICAL METROLOGY APPLICATIONS

 

Statistical metrology is providing new tools and meth-
ods to guide the design of valid experimental designs and
collection of data, to support the decomposition and model-
ing of the variation (spatial variation in particular), and to
study the impact of that variation on manufacturability, per-
formance, and reliability. Table II summarizes several areas
where statistical metrology can be applied. One early appli-
cation of statistical metrology is “fingerprinting” or charac-
terization and comparison of different equipment sets. For
example, the impact of different steppers on die-level line
widths has been examined [9], and comparisons between
typical wafer and die-level patterns in oxide polish using dif-
ferent CMP tools have been reported [10]. Such studies are
immediately useful in equipment selection decisions, but can
also be used to guide equipment or consumable optimiza-
tion. Indeed, in CMP there is a strong demand for a “stan-
dard” means of characterizing spatial and pattern dependent
performance of difference slurry or pad designs [11]; statisti-
cal metrology can supply experimental design and analysis
methods for such standards. In addition to characterization
and optimization of the equipment, variation models are
needed to guide process optimization and process synthesis.
Short-flow methodologies are needed that can accurately
characterize the performance of process modules, including
their important variations and interactions, so that full flow
processes can be more rapidly and easily assembled. An
important element of this is the causal decomposition of
variation - identifying the process steps or modules that con-
tribute to overall variation. For example, the contributions of
etch and lithography in line width variation have been stud-
ied by Yu et al. [12]. Once process design has been accom-
plished, there is a critical need for process and equipment

control strategies that can monitor and minimize such varia-
tion. For example, any modification to process parameters in
a production process, be they as simple as polish time or as
sophisticated as full multivariate process control, will be
undertaken only when the die-level variation implications of
that change are well understood.

In addition to application in the manufacturing arena,
statistical metrology will play an important role in product
design as well. Statistical metrology can contribute to varia-
tion reduction through improved circuit design practice. In
the case of CMP, for example, the experimental methods and
models of ILD thickness variation dependencies on layout
patterns are already contributing strongly to the development
of metal fill patterning practices [13]. An important future
opportunity is the use of variation models to design circuits
which are robust to or compensate for known systematic
variation sources (e.g. skew differences due to systematic
ILD thickness variation).
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