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ABSTRACT

 

Variation in critical device or structural parameters occurs at multiple
scales in semiconductor processes; in most control scenarios, only the larg-
est of these scales is typically addressed. New “statistical metrology” meth-
ods are emerging for the modeling of parameter variation not only across
the wafer, but also within each die. Systematic dependencies to be captured
include layout pattern or topography effects in addition to process relation-
ships. Appropriate sampling and modeling of wafer-level variation in the
face of within-die variation is important for process control applications.
Modeling of within-die dependencies, particularly those related to pattern
density effects, can benefit from signal processing analogies to identify
appropriate parameters for both spatial and process modeling. In several
semiconductor processes, models of both wafer-level and die-level spatial
dependencies will become increasingly important for effective multi-objec-
tive process control that encompasses uniformity, throughput, and environ-
mental goals.

 

1.  INTRODUCTION

 

Practical applications of advanced process control (APC) to semiconductor manufac-
turing are beginning to emerge. In its most common form, APC is employed to maintain
uniform process behavior and product characteristics over extended periods of time in the
face of equipment, consumable, or material drifts and disturbances. In more aggressive
cases, the goal is to maintain not only some target for the mean of one or more parameters
from one wafer or lot to the next, but also to achieve a desired uniformity metric, usually a
wafer-scale measure. Less attention has been paid to modeling and control when within-
die (or intradie) variation is also important. Such variation is increasingly important in
advanced circuits where yield and performance depend on consistent parameters within
the die.

Statistical metrology is the body of methods for understanding 

 

variation

 

 (particularly

 

spatial variation

 

) in microfabricated structures, devices, and circuits. The goals of this
paper are (1) to raise awareness in this area of research, (2) to examine some of the tools
and methods that are emerging for modeling spatial variation, and (3) to consider the
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implications and applications of spatial variation modeling for advanced process control.
In Section 2, key ideas and methods emerging from statistical metrology are briefly
reviewed. Many of these methods have been developed for the purposes of identifying
variation sources and for understanding the possible impact of such variation on circuit
performance. In this paper, the implications for process control are the focus. In particular,
this paper considers issues in wafer-level modeling when die-level variation is also
present, and die-level modeling to capture pattern (layout) process dependencies in a fash-
ion appropriate for use in process control. The modeling of wafer-level variation is consid-
ered in more detail in Section 3, where we see that special care must be taken in modeling
wafer-level uniformity when variation is also occurring at the die-level. The modeling of
die-level variation is the focus of Section 4. While previous work in statistical metrology
has sought to understand and characterize layout pattern dependencies, for process control
we must also develop methods to characterize the 

 

process

 

 dependencies of within-die vari-
ation. Finally, in Section 5 we offer conclusions and directions for future research.

 

2.  STATISTICAL METROLOGY

 

Statistical metrology is an emerging methodology for variation modeling and charac-
terization in semiconductor manufacturing [1]. Historically, process control has paid a
great deal of attention to temporal issues (e.g., variation in some thin film structure or
device parameter from run to run or lot to lot), and to “large scale” spatial issues (e.g., uni-
formity in a parameter of concern across the wafer or across a batch of wafers in multi-
wafer processing tools). Increasingly, however, variation at the die or circuit level is
becoming a key concern, for not only must device or interconnect parameters be near tar-
get, they must also be well “matched” across the die (e.g. to avoid clock or signal skew,
uncertain delays, etc.). When wafer and die variation is poorly understood, it is conven-
tionally treated as a large “random” variation, and worst-case design approaches
employed. Thus the first goal of statistical modeling is to identify the 

 

systematic

 

 compo-
nents of variation, and to develop models and relationships for wafer- and die-level deter-
minants of deviation from target. 

A key tool emerging from statistical metrology is 

 

variation decomposition 

 

— the sep-
aration of variation elements into components most closely related with different spatial
scales and corresponding different physical causes. In such an approach, an additive
model is assumed in which wafer-level, die-level, and wafer-die interaction components
are summed to express the systematic components of variation in measurements across
many die on a wafer. In the additive linear model [2] we have

(1)

where  is the total response,  is the wafer-level variation,

 is the “die pattern” identical for every die, and  captures

the interaction between the wafer-level and die-level variation. Wafer-level variation is

f RAW x y,( ) f WLV x y,( ) f DLV x y,( ) f INTERACTION x y,( ) ε+ + +=

f RAW x y,( ) f WLV x y,( )

f DLV x y,( ) f INTERACTION x y,( )
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generally considered to be relatively smooth or slowly varying across the wafer, and can
be modeled using simply spatial regression, moving average (or down-sampled moving
average) approaches, or spline methods [2]. Die-level variation is that component consid-
ered to be identical for every die on the wafer — that is, the component directly related to
the repeated layout pattern present on every die. The spatial die “signature” can be
extracted by taking advantage of the known periodicity in the stepping of the die across
the wafer, and Fourier transform approaches used to isolate those components clustered
around this fundamental frequency and its harmonics. An alternative method for die-level
(or pattern dependent) modeling is a modified ANOVA (analysis of variance) approach. In
Section 4, we will consider one important special case of layout pattern-dependent model-
ing, and examine methods for modeling 

 

pattern density 

 

effects. The final component of
variation often considered is the wafer-die interaction. This corresponds to any perturba-
tion in the die pattern as a function of position on the wafer. For example, if a substantial
within-die variation is present, one often finds that the edge of the wafer will attenuate or
accentuate the die pattern. This covariance between the wafer and die is of clear concern
for process control; process modifications in an attempt to improve or control the wafer
level variation may also have an unintentional effect on the die-level pattern dependencies.

Two implications or extensions of statistical metrology are addressed here. First, mod-
eling of wafer scale uniformity must be undertaken with some caution when within-die
variation is also present. In particular, sampling of a single (identical) structure from each
die across the wafer can give a misleading impression of wafer level variation. Second, in
a number of cases, long-range pattern density dependencies (acting across several mm) are
important. In such cases, we find that signal processing concepts, including the notion of a
density “impulse” or “step” response, can be effective for the characterization and model-
ing of such dependencies. Future control strategies will need to account for not only wafer
scale uniformity, but the effect of control decisions on within-die uniformity as well.

 

3.  WAFER-LEVEL VARIATION MODELING

 

Several processes show layout pattern sensitivities; the calculation of wafer level uni-
formity in such cases must be performed with great care. Well-known pattern sensitivities
in photolithography include linewidth variation as a function of nearby line distances; in
plasma etch proximity and microloading effects are a concern; in CMP, planarization
depends substantially on layout induced surface topography. In all of these cases, a sys-
tematic die-dependency is present: different structures within the die will display similar
responses from one die to the next, even if those structures have radically different
responses within the die.

In a typical process control scenario, a relatively small number of samples are often
taken across the wafer. Film thickness measurements, for example, may be consistently
gathered from a large capacitor or pad structure on the die for some number of die on the
wafer. In this sampling, however, the observed nonuniformity is a combination of the true
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underlying wafer level trend and any wafer-die interaction. This is illustrated in
Figure 1(a), where we see a hypothetical one-dimensional cross-section through the wafer.
The dies near the edge of the wafer are more uniform, and those near the center exhibit
larger variation. While the die mean (or wafer-level trend) across the wafer shows a small
curvature, the enclosing “envelope” of wafer and die variation is larger. A sampling of
only one structure on each die may erroneously assign both die and wafer variation to the
wafer scale uniformity, as illustrated in Figure 1(a). A control strategy which seeks to
make these sampled values more uniform might be ineffective (if the control action only
shifts the die means rather than reduce the die range), as illustrated in Figure 1(b). 

 

Figure 1: (a) Wafer-level trend generated by single-point sampling within each die can be very different 
than the mean surface. (b) Control based on sampled surface may achieve erroneous “uniformity.”

 

Two methods can be used to overcome what is essentially a sampling and aliasing
problem. First, intensive sampling of the structures within measured die, in addition to
sampling of several die across the wafer, can be performed. For example, in Figure 2 we
see that the shape of a regression surface fit to all available data (i.e. multiple within-die
samples) is substantially different from the surface fit using single site per die sampling in
a typical CMP process. This intensive sampling, of course, has a substantial cost in gather-
ing the measurements. A simple but effective strategy is to measure both a “high” and a
“low” spot within each die that is sampled across the wafer. In CMP, for example, one
might measure both a “dense” and a “sparse” region on the die. The within-die range then
becomes a simple estimate of the die variance, and can be used to check for behavior such
as in Figure 1.

A deeper question also emerges when we fit regression surfaces for wafer-level varia-
tion in the face of within-die variation, and in particular when wafer-die interactions may
be present. In the typical regression surface fit, an inherent assumption of the ordinary
least squares (OLS) regression is that the variance is uniform across the space of the fit. As
illustrated schematically in Figure 1, this may not be the case when substantial within-die
variation is present, thus casting doubt on the use of OLS. 

Die Wafer-level
TrendSize

Wafer/Die
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Wafer-level
TrendDie

Size
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Figure 2: Wafer-level variation surfaces for a CMP process, generated from (a) single site sampling (88 
die); (b) multiple within-die samples (15 points within each die).

 

One approach is to stabilize the variance using a weighted least squares fit. For exam-
ple, one may fit a regression surface to all available data, but weight each data point by the
inverse of the variance of the die from which that data comes. As shown in Figure 3, the
surface produced by weighted regression can be substantially different than that produced
by unweighted regression. Indeed, in Figure 3 we find that the weighted regression is more
successful in capturing a larger range of wafer level variation (9000 to over 1100) com-
pared to the unweighted case (9400 to under 11000). In the additive linear model of Equa-
tion (1) however, it is not entirely clear if weighted or unweighted regression for

 is most appropriate, and how one should account for the components of the

variance in the face of weighted regression. This is closely related to the suggestion of
Davis et al. [3], who propose that both the mean and covariance be estimated simulta-
neously using a maximum likelihood approach. A variant of this approach which estimates
wafer-level, die-level, and interaction terms simultaneously should be pursued in future
research.

 

4.  PATTERN DENSITY MODELS

 

Some processes appear to exhibit a long-range dependence on the surface topography
(or presence of layout-induced structures) on the wafer. For example, CMP is known to
exhibit a strong dependence on the amount of “raised” material (or “pattern density”) to be
planarized in some local region (where “local” may span several mm). Because the raised
features are closely related to, or caused by, the specifics of the layout, the modeling and
control of such pattern density effects can be particularly troublesome. From the point of
view of control, this introduces a product dependency — the layout is different for each
product, and the effect of the process may be slightly different for each layout. The model-

Wafer X

W
af

er
 Y

-40 -20 0 20 40 60

-4
0

-2
0

0
20

40
60

11600

11600
11600

11800

11800

12000 12000
12000

12000

1220012400126001280012800

13000
1320013400

WLV via single site sampling

Wafer X
W

af
er

 Y

-60 -40 -20 0 20 40 60

-6
0

-4
0

-2
0

0
20

40
60

9000

9000

9200

9400
9600

9800
10000

10200

10400

10400

10400

10600

10800

11000

WLV via weighted regression(b) WLV using multiple within-die samples(a) WLV using single site sampling

f WLV x y,( )



 

6

 

ing of pattern-dependent effects will be increasingly necessary to overcome such non-ide-
alities in process technology.

 

Figure 3: CMP regression wafer surfaces constructed using unweighted and weighted least squares 
regression.

 

The modeling of pattern density effects is interesting in that the length scale and model
structure (e.g. spatial autocorrelation function [4]) of the dependence is not known a priori
and must be established. In some cases, an output 

 

z

 

 of interest can be modeled as a func-
tion 

 

g

 

 of an “effective density”

 

 d(x,y)

 

 that is positionally dependent:

, (2)

and in many cases, a relatively simple functional relationship between the effective density
and the output variable exists [5], e.g. 

. (3)

The key problem then reduces to appropriate modeling of the effective density 

 

d(x,y)

 

.

One approach is to consider a square “window” over which the density is calculated,
as shown in Figure 4, and determine the window dimensions based on the best fit to avail-
able experimental or manufacturing data [6]. The density can be thought of as the convolu-
tion of the window 

 

w(x,y) 

 

and the layout pattern 

 

l(x,y)

 

. (4)

 

In the case of a square window, the width of the window provides a very compact charac-
terization of the length scale of the response. For example, in CMP processes one can
think of this parameter as the “planarization length” over which the polishing pad has
effect. As shown in Figure 5, even this simple square window approach can be very effec-
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tive in relating observed polishing dependencies with computed or extracted densities [7].

 

Figure 4: Local density determination using a moving window of size w

 

L

 

.

Figure 5: CMP die pattern modeling: the final polished oxide thickness shows a strong dependence on 
the underlying layout density.

 

On the other hand, the simple square window approach is unsatisfying in two respects.
First, the square window, while convenient, is not directly connected to the expected phys-
ical behavior of the system. Indeed, treating the pad as an elastic material, one expects a
much more narrowly shaped “impulse” response (window shape 

 

w(x,y)

 

) than a square
window. Second, the determination of the window size by the best “goodness of fit” to dif-
ferent computed window sizes is somewhat indirect and inexact (a number of different

window sizes are often found with very nearly similar regression R

 

2

 

 goodness of fit val-
ues); it would be helpful if a more direct approach could be employed.
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An alternative based on a signal processing approach is to determine the window char-
acteristics using the data in the frequency transform space:

 

(5)

 

where  is the inverse Fourier transform, and 

 

D

 

 and 

 

L

 

 are the Fourier transforms of 

 

d

 

and 

 

l

 

, respectively. In principal, it should be possible to directly extract the window shape
and size from experimental layouts and resulting measurements (assuming the function 

 

g

 

is also linear in the density). In practice, however, the layout frequency transform often has
zeroes in it which make the extraction difficult.

The density response function or moving average window is likely to be non-rectangu-
lar, i.e. to have a “tapered” magnitude as a function of distance from center

 

. 

 

Direct experi-
mental determination of the density “impulse” response 

 

w(x,y) 

 

is difficult. A closely
related alternative, again borrowing from a signal processing approach, is direct experi-
mental determination of the density “step” response. Our goal is the extraction of the
response 

 

w(x)

 

 of the polishing process to an infinitesimal impulse in density which we can
use with new layouts (having different feature level layouts) to compute the expected final
polished oxide thickness or planarity over the entire die. In one dimension, the resulting
effective density can be computed as

(6)

from which the resulting oxide thickness can be computed using Equation (3). The effec-
tive density impulse response 

 

w(x)

 

 is then easily retrieved by differentiation of the spatial
step response (the observed thickness 

 

z(x)

 

) with respect to the spatial variable: 

. (7)

Differentiating the step  inside the integral of Equation (6):

(8)

which recovers our impulse response 

 

w(x)

 

 as desired.

W kx ky,( )
D kx ky,( )
L kx ky,( )
----------------------=

w x y,( ) F
1–

W kx ky,( )( )=

F
1–

l ξ( )w x ξ–( ) ξd

∞–

∞
∫ d x( )=

xd
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xd

d α βd x( )+[ ] β
xd

d
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l x( ) u x( )=

xd
d

z x( ) β
xd
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d x( ) β δ ξ( )w x ξ–( ) ξd

∞–

∞
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Figure 6: Quasi-two dimensional response d(x) for a rectangular window w(x) or “pad response” func-
tion applied to a quasi-1D step l(x).

In two-dimensions (corresponding to the surface of the wafer), we must instead con-
sider a quasi-1D step in density (a step in the x direction and infinite in the y direction) as
illustrated in Figure 6. For the case of a rectangular window, the measurement  of
the result across the polished step is identical to the result we would see if we were to con-
sider a simple one-dimensional system and step response z(x). In general, this simple cor-
respondence does not hold and it is not possible to uniquely recover the shape and extent
of an arbitrary symmetric two-dimensional impulse response from the quasi-1D step
response. In two dimensions, the response z(x,y) is the convolution, as described in Equa-
tion (4) of the window function and an arbitrary layout function. Writing the convolution
in integral form, the effective density is

. (9)

For the quasi-1D step response, our spatial layout function is a step in the x direction:

. (10)

We can differentiate the measured trace 

(11)

to retrieve the impulse response: Differentiating Equation (9) for the case of the step in
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Equation (10) now yields the quasi-1D impulse response. Once again we perform the dif-
ferentiation of the layout function inside the integral to generate the quasi-1D impulse
response:

. (12)

We see that the quasi-1D impulse response in Equation (12) is different than the simple
one-dimensional impulse response of Equation (8). The functional form of the 1D and
quasi-1D impulse responses will only be comparable (to within a scale factor) if the
impulse response w(x,y) is separable in x and y so that the y dependency integrates out to a
constant independent of x.

If we make the additional approximation that the shape of the impulse response is
gaussian, the separability condition is satisfied and we can extract a simple shape parame-
ter for the impulse response. This shape parameter can then be used to characterize the
process pattern dependency. That is to say, a gaussian impulse response

(13)

has a simple parameter σ which characterizes the width of the response. This case is illus-
trated in Figure 7, in which we find that the differentiated quasi-1D impulse response is
simply

. (14)

The quasi-1D step response thus offers a simple experimental approach to determine
appropriate window functions for use in modeling of pattern density dependent die-level
variation. One can envision an experimental design in which the σ parameter is extracted
for different combinations of process conditions, and simple regression or other models of
this planarization length as a function of the process can be generated. 

5.  CONCLUSION AND FUTURE WORK

We now have the basic elements needed to attack the problem of both wafer-level and
die-level spatial dependencies for process control. Wafer-level extraction and spatial mod-
eling can be achieved, given that sufficient care is taken in sampling and modeling. The
first stage is to develop the spatial model; the second stage required for process control is
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to also capture the process dependencies of that spatial variation. Approaches exist for
such process/spatial modeling. For example, Mozumder and Lowenstein [8] suggest mod-
eling spatial regression coefficients as a function of the process parameters. Alternatively,
the “multiple response surface” (or “site models”) approach of Guo and Sachs [9] consid-
ers the modeling of individual sites or locations on the wafer as a function of the process,
and then the combination of these site models for flexibly form spatial models. Some addi-
tional research into the use of site modeling in the face of within-die variation is needed
(e.g. hierarchical modeling of “die” and “wafer” sites).

Figure 7: The response of a two-dimensional gaussian “pad impulse” function to a quasi-1D step l(x). 

In this paper, we have also considered steps that need to be taken to make die-level
spatial modeling amenable to the needs of process control. Here again, we need to be able
to extract the die-level “signature” or pattern dependencies. The first step — creating the
spatial pattern or model — must again be augmented by the ability to model the pattern as
a function of process parameters (which will be the control variables in any feedback con-
trol scheme). Here, we have examined compact parametric descriptions of the pattern den-
sity dependency that may be appropriate for some kinds of fabrication processes, such as
CMP. A “planarization length” parameter can be defined, and we suggest that experimen-
tal “step response” approaches can be used to extract this parameter. Once reduced to a
parametric dependency, that parameter can itself be modeled as a function of process con-
ditions.
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Further work is needed to verify the notion of the pattern density step response, and to
consider the process dependency of such a parameter. An exciting new challenge for pro-
cess control will then be development of strategies that utilize both wafer-level and die-
level spatial and process dependency models to achieve the difficult goals of both die- and
wafer-level uniformity. Process control which achieves multiple objectives including
wafer and die uniformity, as well as throughput and environmental goals, is an important
area for further research.
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